Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.260
Filtrar
1.
Oncogene ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609499

RESUMO

Triple-negative breast cancer (TNBC) is an exceptionally aggressive subtype of breast cancer. Despite the recognized interplay between tumors and tumor-associated macrophages in fostering drug resistance and disease progression, the precise mechanisms leading these interactions remain elusive. Our study revealed that the upregulation of collagen type V alpha 1 (COL5A1) in TNBC tissues, particularly in chemoresistant samples, was closely linked to an unfavorable prognosis. Functional assays unequivocally demonstrated that COL5A1 played a pivotal role in fueling cancer growth, metastasis, and resistance to doxorubicin, both in vitro and in vivo. Furthermore, we found that the cytokine IL-6, produced by COL5A1-overexpressing TNBC cells actively promoted M2 macrophage polarization. In turn, TGFß from M2 macrophages drived TNBC doxorubicin resistance through the TGFß/Smad3/COL5A1 signaling pathway, establishing a feedback loop between TNBC cells and macrophages. Mechanistically, COL5A1 interacted with TGM2, inhibiting its K48-linked ubiquitination-mediated degradation, thereby enhancing chemoresistance and increasing IL-6 secretion. In summary, our findings underscored the significant contribution of COL5A1 upregulation to TNBC progression and chemoresistance, highlighting its potential as a diagnostic and therapeutic biomarker for TNBC.

2.
J Agric Food Chem ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619332

RESUMO

The present work was conducted to research the potential mechanism of palmatine (PAL) on lipopolysaccharide (LPS)-caused acute lung injury (ALI). Network pharmacology and bioinformatic analyses were carried out. Mice were intragastrically treated with PAL and intratracheally stimulated with LPS. LPS-induced RAW264.7 cells were employed for the in vitro model. The MPO activity, W/D ratio, neutrophils, total cell number in BALF, and histopathological alteration were examined. The levels of TNF-α, IL-1ß, IL-6, IL-18, IL-4, and IL-10 in serum, BALF, and supernatant were examined by ELISA. The mRNA expressions of iNOS, CD68, Arg1, Ym1, and CD206 and protein expressions of NAMPT, TLR2, CCR1, and NLRP3 inflammasome were detected by PCR, WB, and immunofluorescence. The NAMPT inhibitor FK866, TLR2 inhibitor C29, CCR1 inhibitor BX471, NAMPT-overexpression (OE) plasmid, and TLR2-OE plasmid were used for mechanism research. As a result, PAL relieved the symptoms of ALI. PAL inhibited M1 phenotype indices and promoted M2 phenotype indices in both LPS-induced mice and RAW264.7 cells. PAL also inhibited the expressions of NAMPT, TLR2, CCR1, and NLRP3 inflammasome. The treatments with FK866, NAMPT-OE plasmid, C29, TLR2-OE plasmid, and BX471 proved that PAL exerted its effect via NAMPT/TLR2/CCR1. Molecular docking suggested that PAL might combine with NAMPT. In conclusion, PAL ameliorated LPS-induced ALI by inhibiting M1 phenotype macrophage polarization via NAMPT/TLR2/CCR1 signaling.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38571344

RESUMO

BACKGROUND: Acute Kidney Injury (AKI) is defined as a sudden loss of kidney function, which is often caused by drugs, toxins, and infections. The large spectrum of AKI implies diverse pathophysiological mechanisms. In many cases, AKI can be lethal, and kidney replacement therapy is frequently needed. However, current treatments are not satisfying. Developing novel therapies for AKI is essential. Adult stem cells possess regenerative ability and play an important role in medical research and disease treatment. METHODS: In this study, we isolated and characterized a distinct human urine-derived stem cell, which expressed both proximal tubular cell and mesenchymal stem cell genes as well as certain unique genes. RESULTS: It was found that these cells exhibited robust protective effects on tubular cells and anti- inflammatory effects on macrophages in vitro. In an ischemia-reperfusion-induced acute kidney injury NOD-SCID mouse model, transplantation of USCs significantly protected the kidney morphology and functions in vivo. CONCLUSION: In summary, our results highlighted the effectiveness of USCs in protecting from PTC injury and impeding macrophage polarization, as well as the secretion of pro-inflammatory interleukins, suggesting the potential of USCs as a novel cell therapy in AKI.

4.
Front Cardiovasc Med ; 11: 1377765, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590697

RESUMO

Background: Patients with single-ventricle physiologies continue to experience insufficient circulatory power after undergoing palliative surgeries. This paper proposed a right heart assist device equipped with flexible blades to provide circulatory assistance for these patients. The optimal elastic modulus of the flexible blades was investigated through numerical simulation. Methods: A one-way fluid-structure interaction (FSI) simulation was employed to study the deformation of flexible blades during rotation and its impact on device performance. The process began with a computational fluid dynamics (CFD) simulation to calculate the blood pressure rise and the pressure on the blades' surface. Subsequently, these pressure data were exported for finite element analysis (FEA) to compute the deformation of the blades. The fluid domain was then recreated based on the deformed blades' shape. Iterative CFD and FEA simulations were performed until both the blood pressure rise and the blades' shape stabilized. The blood pressure rise, hemolysis risk, and thrombosis risk corresponding to blades with different elastic moduli were exhaustively evaluated to determine the optimal elastic modulus. Results: Except for the case at 8,000 rpm with a blade elastic modulus of 40 MPa, the pressure rise associated with flexible blades within the studied range (rotational speeds of 4,000 rpm and 8,000 rpm, elastic modulus between 10 MPa and 200 MPa) was lower than that of rigid blades. It was observed that the pressure rise corresponding to flexible blades increased as the elastic modulus increased. Additionally, no significant difference was found in the hemolysis risk and thrombus risk between flexible blades of various elastic moduli and rigid blades. Conclusion: Except for one specific case, deformation of the flexible blades within the studied range led to a decrease in the impeller's functionality. Notably, rotational speed had a more significant impact on hemolysis risk and thrombus risk compared to blade deformation. After a comprehensive analysis of blade compressibility, blood pressure rise, hemolysis risk, and thrombus risk, the optimal elastic modulus for the flexible blades was determined to be between 40 MPa and 50 MPa.

5.
Fitoterapia ; 175: 105951, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583637

RESUMO

Four undescribed amide alkaloids hongkongensines A-C and 1-(1-oxo-6-hydroxy-2E,4E-dodecadienyl)-piperidine, five known amide alkaloids, and three known neolignans were isolated from the aerial part of Piper hongkongense. The planar structures of these compounds were determined by detailed analyses of HR-ESI-MS and NMR data. The absolute configurations of hongkongensines A-C were elucidated by single-crystal X-ray diffraction analysis and ECD calculations. Moreover, the inhibitory activities of PCSK9 expression in vitro for all compounds were assessed by PCSK9 AlphaLISA screening. Kadsurenone (10) displayed a significant inhibitory activity at 5 µM with an inhibition rate of 51.98%, compared with 55.55% of berberine (BBR 5 µM).

6.
Acta Biomater ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641183

RESUMO

Communication between tumors and lymph nodes carries substantial significance for antitumor immunotherapy. Remodeling the immune microenvironment of tumor-draining lymph nodes (TdLN) plays a key role in enhancing the anti-tumor ability of immunotherapy. In this study, we constructed a biomimetic artificial lymph node structure composed of F127 hydrogel loading effector memory T (TEM) cells and PD-1 inhibitors (aPD-1). The biomimetic lymph nodes facilitate the delivery of TEM cells and aPD-1 to the TdLN and the tumor immune microenvironment, thus realizing effective and sustained anti-tumor immunotherapy. Exploiting their unique gel-forming and degradation properties, the cold tumors were speedily transformed into hot tumors via TEM cell supplementation. Meanwhile, the efficacy of aPD-1 was markedly elevated compared with conventional drug delivery methods. Our finding suggested that the development of F127@TEM@aPD-1 holds promising potential as a future novel clinical drug delivery technique. STATEMENT OF SIGNIFICANCE: Bionic artificial lymph nodes(F127@TEM@aPD-1) show unique advantages in cancer treatment. When injected subcutaneously, the artificial lymph node can continuously supplement TEM cells and aPD-1 to tumor draining lymph nodes (TdLN) and the tumor microenvironment, not only improving the efficacy of ICB therapy through slow release, but also exhibiting dual regulatory effects on the tumor and TdLN.

7.
Bioresour Technol ; : 130715, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641304

RESUMO

To mitigate the environmental risks posed by the accumulation of antibiotic mycelial dregs (AMDs), this study first attempted over 200 tons of mass production fermentation (MP) using tylosin and spectinomycin mycelial dregs alongside pilot-scale fermentation (PS) for comparison, utilizing the integrated-omics and qPCR approaches. Co-fermentation results showed that both antibiotics were effectively removed in all treatments, with an average removal rate of 92%. Antibiotic resistance gene (ARG)-related metabolic pathways showed that rapid degradation of antibiotics was associated with enzymes that inactivate macrolides and aminoglycosides (e.g., K06979, K07027, K05593). Interestingly, MP fermentations with optimized conditions had more efficient ARGs removal because homogenization permitted faster microbial succession, with more stable removal of antibiotic resistant bacteria and mobile genetic elements. Moreover, Bacillus reached 75% and secreted antioxidant enzymes that might inhibit horizontal gene transfer of ARGs. The findings confirmed the advantages of MP fermentation and provided a scientific basis for other AMDs.

8.
BMC Geriatr ; 24(1): 352, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637745

RESUMO

BACKGROUND: Fat to muscle mass ratio (FMR), a novel index integrating fat and muscle composition, has garnered attention in age-related conditions such as type 2 diabetes mellitus (T2DM) and neurodegenerative diseases. Despite this research on the relationship between FMR and cognitive impairment (CI) in T2DM remains scarce. This study aimed to investigate the sex-specific association between FMR and CI in elderly T2DM patients. METHODS: A total of 768 elderly (> 60 years) T2DM in-patients (356 men and 412 women) were recruited from the Department of Endocrinology at Tianjin Nankai University affiliated hospital. Bioelectrical Impedance Analysis (BIA) was used to assess body composition, and Montreal Cognitive Assessment (MoCA) was used to evaluate cognitive performance. T2DM patients were categorized into normal cognitive function (NC) and cognitive impairment (CI) groups based on MoCA scores and stratified by sex. Binary logistic regression was employed to examine the association between FMR and CI. RESULTS: Among the participants, 42.7% of men and 56.3% of women experienced cognitive deterioration. Women with CI exhibited lower body mass index (BMI) and skeletal muscle mass index (SMI), while men with cognitive disorders showed lower SMI, FMR, and higher fat mass index (FMI). FMR was consistently unrelated to cognition in females, irrespective of adjustment made. However, in males, FMR was significantly associated with an increasing risk of cognitive dysfunction after adjusting for demographic and clinical variables (OR: 1.175, 95% CI: 1.045-1.320, p = 0.007). Furthermore, for each 0.1 increase in FMR, the incidence of CI rose by 31.1% after additional adjustment for BMI. In males, the prevalence of CI increased sequentially across FMR quartiles (p < 0.05). CONCLUSION: Elderly T2DM men with high FMR had unfavorable cognitive function. FMR is independently associated with an increased risk of CI in male T2DM patients regardless of BMI.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Feminino , Idoso , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Estudos Transversais , Composição Corporal , Músculo Esquelético , Índice de Massa Corporal , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/etiologia
9.
Cancer Cell Int ; 24(1): 133, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622705

RESUMO

The application of chimeric antigen receptor (CAR) T cells in the management of hematological malignancies has emerged as a noteworthy therapeutic breakthrough. Nevertheless, the utilization and effectiveness of CAR-T cell therapy in solid tumors are still limited primarily because of the absence of tumor-specific target antigen, the existence of immunosuppressive tumor microenvironment, restricted T cell invasion and proliferation, and the occurrence of severe toxicity. This review explored the history of CAR-T and its latest advancements in the management of solid tumors. According to recent studies, optimizing the design of CAR-T cells, implementing logic-gated CAR-T cells and refining the delivery methods of therapeutic agents can all enhance the efficacy of CAR-T cell therapy. Furthermore, combination therapy shows promise as a way to improve the effectiveness of CAR-T cell therapy. At present, numerous clinical trials involving CAR-T cells for solid tumors are actively in progress. In conclusion, CAR-T cell therapy has both potential and challenges when it comes to treating solid tumors. As CAR-T cell therapy continues to evolve, further innovations will be devised to surmount the challenges associated with this treatment modality, ultimately leading to enhanced therapeutic response for patients suffered solid tumors.

10.
PLoS One ; 19(4): e0301990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625851

RESUMO

Cardiac remodeling is the primary pathological feature of chronic heart failure (HF). Exploring the characteristics of cardiac remodeling in the very early stages of HF and identifying targets for intervention are essential for discovering novel mechanisms and therapeutic strategies. Silent mating type information regulation 2 homolog 3 (SIRT3), as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolism. However, whether SIRT3 plays a role in cardiac remodeling by regulating the biosynthesis of mitochondrial cardiolipin (CL) is unknown. In this study, we induced pressure overload in wild-type (WT) and SIRT3 knockout (SIRT3-/-) mice via transverse aortic constriction (TAC). Compared with WT mouse hearts, the hearts of SIRT3-/- mice exhibited more-pronounced cardiac remodeling and fibrosis, greater reactive oxygen species (ROS) production, decreased mitochondrial-membrane potential (ΔΨm), and abnormal mitochondrial morphology after TAC. Furthermore, SIRT3 deletion aggravated TAC-induced decrease in total CL content, which might be associated with the downregulation of the CL synthesis related enzymes cardiolipin synthase 1 (CRLS1) and phospholipid-lysophospholipid transacylase (TAFAZZIN). In our in vitro experiments, SIRT3 overexpression prevented angiotensin II (AngII)- induced aberrant mitochondrial function, CL biosynthesis disorder, and peroxisome proliferator-activated receptor gamma (PPARγ) downregulation in cardiomyocytes; meanwhile, SIRT3 knockdown exacerbated these effects. Moreover, the addition of GW9662, a PPARγ antagonist, partially counteracted the beneficial effects of SIRT3 overexpression. In conclusion, SIRT3 regulated PPARγ-mediated CL biosynthesis, maintained the structure and function of mitochondria, and thereby protected the myocardium against cardiac remodeling.


Assuntos
Sirtuína 3 , Camundongos , Animais , Sirtuína 3/genética , Sirtuína 3/metabolismo , PPAR gama/metabolismo , Cardiolipinas/metabolismo , Remodelação Ventricular , Miócitos Cardíacos/metabolismo , Camundongos Knockout
11.
Int J Biol Macromol ; : 131686, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643923

RESUMO

Despite a fair amount of lignin conversion during mycelial growth, previous structural analyses have not yet revealed how lignin changes continuously and what the relationship is between lignin and ligninolytic enzymes. To clarify these aspects, Quercus acutissima sawdust attaching Ganoderma lucidum mycelium collected from different growth stage was subjected to analysis of lignin structure and ligninolytic enzyme activity. Two key periods of lignin degradation are found during the cultivation of G. lucidum: hypha rapid growth period and primordium formation period. In the first stage, laccase activity is associated with the opening of structures such as methoxyls, ß-O-4' substructures and guaiacyl units in lignin, as well as the shortening of lignin chains. Manganese peroxidases and lignin peroxidases are more suitable for degrading short chain lignin. The structure of phenylcoumarans and syringyl changes greatly in the second stage. The results from sawdust attaching mycelium provide new insights to help improve the cultivation substrate formulation of G. lucidum and understand biomass valorization better.

12.
Ann Hematol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644415

RESUMO

BACKGROUND: Aplastic anemia (AA) is a kind of bone marrow failure (BMF) characterized by pancytopenia with hypoplasia/aplasia of bone marrow. Immunosuppressive therapy and bone marrow transplantation are effective methods to treat severe aplastic anemia. However, the efficacy is limited by complications and the availability of suitable donors. This study aimed to determine whether any circulating druggable protein levels may have causal effects on AA and provide potential novel drug targets for AA. METHODS: Genetic variants strongly associated with circulating druggable protein levels to perform Mendelian randomization (MR) analyses were used. The effect of these druggable protein levels on AA risk was measured using the summary statistics from a large-scale proteomic genome-wide association study (GWAS) and FinnGen database ( https://www.finngen.fi/en/access_results ). Multivariable MR analyses were performed to statistically adjust for potential confounders, including platelet counts, reticulocyte counts, neutrophil counts, and proportions of hematopoietic stem cells. RESULTS: The data showed that higher level of circulating IFN-γ levels was causally associated with AA susceptibility. The causal effects of circulating IFN-γ levels on the AA were broadly consistent, when adjusted for platelet counts, reticulocyte counts, neutrophil counts and proportions of hematopoietic stem cells. CONCLUSIONS: High levels of circulating IFN-γ levels might increase the risk of AA and might provide a potential novel target for AA.

13.
Plant Physiol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502063

RESUMO

Anthraquinones constitute the largest group of natural quinones, which are used as safe natural dyes and have many pharmaceutical applications. In plants, anthraquinones are biosynthesized through two main routes: the polyketide pathway and the shikimate pathway. The latter primarily forms alizarin-type anthraquinones, and the prenylation of 1,4-dihydroxy-2-naphthoic acid is the first pathway-specific step. However, the prenyltransferase responsible for this key step remains uncharacterized. In this study, the cell suspension culture of Madder (Rubia cordifolia), a plant rich in alizarin-type anthraquinones, was discovered to be capable of prenylating 1,4-dihydroxy-2-naphthoic acid to form 2-carboxyl-3-prenyl-1,4-naphthoquinone and 3-prenyl-1,4-naphthoquinone. Then, a candidate gene belonging to the UbiA superfamily, R. cordifolia  dimethylallyltransferase 1 (RcDT1), was shown to account for the prenylation activity. Substrate specificity studies revealed that the recombinant RcDT1 recognized naphthoic acids primarily, followed by 4-hydroxyl benzoic acids. The prenylation activity was strongly inhibited by 1,2- and 1,4-dihydroxynaphthalene. RcDT1 RNA interference significantly reduced the anthraquinones content in R. cordifolia callus cultures, demonstrating that RcDT1 is required for alizarin-type anthraquinones biosynthesis. The plastid localization and root-specific expression further confirmed the participation of RcDT1 in anthraquinone biosynthesis. The phylogenetic analyses of RcDT1 and functional validation of its rubiaceous homologs indicated that DHNA-prenylation activity evolved convergently in Rubiaceae via recruitment from the ubiquinone biosynthetic pathway. Our results demonstrate that RcDT1 catalyzes the first pathway-specific step of alizarin-type anthraquinones biosynthesis in R. cordifolia. These findings will have profound implications for understanding the biosynthetic process of the anthraquinone ring derived from the shikimate pathway.

15.
Mol Hortic ; 4(1): 9, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38449027

RESUMO

Botrytis cinerea is one of the most destructive phytopathogenic fungi, causing significant losses to horticultural crops. As a necrotrophic fungus, B. cinerea obtains nutrients by killing host cells. Secreted cell death-inducing proteins (CDIPs) play a crucial role in necrotrophic infection; however, only a limited number have been reported. For high-throughput CDIP screening, we optimized the prokaryotic expression system and compared its efficiency with other commonly used protein expression systems. The optimized prokaryotic expression system showed superior effectiveness and efficiency and was selected for subsequent CDIP screening. The screening system verified fifty-five candidate proteins and identified two novel SGNH family CDIPs: BcRAE and BcFAT. BcRAE and BcFAT exhibited high expression levels throughout the infection process. Site-directed mutagenesis targeting conserved Ser residues abolished the cell death-inducing activity of both BcRAE and BcFAT. Moreover, the transient expression of BcRAE and BcFAT in plants enhanced plant resistance against B. cinerea without inducing cell death, independent of their enzymatic activities. Our results suggest a high-efficiency screening system for high-throughput CDIP screening and provide new targets for further study of B. cinerea-plant interactions.

16.
RSC Adv ; 14(12): 8067-8074, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38454942

RESUMO

Since the successful separation of graphene, carbon materials with the excellent physical and chemical properties have attracted the interest of a large number of researchers. In this paper, density functional theory combined with non-equilibrium Green's function is used to systematically study the electronic structures of two-dimensional biphenylene, net-graphene, graphene+ and T-graphene, and to reveal the electron transport properties of net-graphene nanodevices under asymmetric regulation. The results show that biphenylene, net-graphene, graphene+, and T-graphene all show metallic properties, in which biphenylene and net-graphene show anisotropy, while graphene+ and T-graphene show isotropy. In addition, for the one-dimensional new carbon based nanoribbons, except for the armchair-edged net-graphene and biphenylene nanoribbons, which exhibit semiconductor properties and a band gap value of 0.08 eV, the rest of the carbon nanoribbons display metal properties. Interestingly, two of them showed a tendency to oscillate and decrease the band gap value with increasing width, while BPN-2 biphenylene nanoribbons directly changed from exhibiting semiconductor to metallic properties with increasing width combination with no oscillation. The electronic transport properties of net-graphene nanoribbons based nanodevice models for electrons transform along zigzag and armchair directions are systematically studied. An obvious negative differential resistance characteristic along the armchair and zigzag directions can be found. Overall, these interesting results show that these new net-graphene nanodevices have good practical application prospects in future electronic nanodevices.

17.
Viruses ; 16(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543744

RESUMO

Crimean-Congo hemorrhagic fever (CCHF), caused by Crimean-Congo Hemorrhagic virus (CCHFV), is listed in the World Health Organization's list of priority diseases. The high fatality rate in humans, the widespread distribution of CCHFV, and the lack of approved specific vaccines are the primary concerns regarding this disease. We used microfluidic technology to optimize the mRNA vaccine delivery system and demonstrated that vaccination with nucleoside-modified CCHFV mRNA vaccines encoding GnNSmGc (vLMs), Gn (vLMn), or Gc (vLMc) induced different immune responses. We found that both T-cell and B-cell immune responses induced by vLMc were better than those induced by vLMn. Interestingly, immune responses were found to be lower for vLMs, which employed NSm to link Gn and Gc for non-fusion expression, compared to those for vLMc. In conclusion, our results indicated that NSm could be a factor that leads to decreased specific immune responses in the host and should be avoided in the development of CCHFV vaccine antigens.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Humanos , Animais , Camundongos , Vacinas de mRNA , Vacinação , Imunidade Celular
19.
Chemistry ; : e202400329, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551107

RESUMO

Green hydrogen production through electrochemical overall water splitting has suffered from sluggish oxygen evolution reaction (OER) kinetics, inferior conversion efficiency, and high cost. Herein, ultrafine PtIr clusters are synthesized via an electrodeposition method and decorated on the Co3O4 nanoflowers assembled by nanowires (PtIr-Co3O4). The encouraging performances in electrochemical OER and hydrogen evolution reaction (HER) are achieved over the PtIr-Co3O4 catalyst, with the overpotentials as low as 410 and 237 mV at 100 mA cm-2, respectively, outperforming the commercial IrO2 and Pt/C catalysts. Due to the ultralow loading of PtIr clusters, the PtIr-Co3O4 catalyst exhibits 1270 A gIr-1 for OER at the overpotential of 400 mV. Our detailed analyses also show that the strong interactions between the ultrafine PtIr clusters and the Co3O4 nanoflowers enable the PtIr-Co3O4 catalyst to afford 10 mA cm-2 for the overall water splitting at the potential of 1.57 V, accompanied by high durability for 100 h.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38486405

RESUMO

BACKGROUND: G protein-coupled receptor 40 (GPR40) is a potential drug target for Alzheimer's disease (AD), and its agonist GW9508 ameliorates cognitive impairment by intravenous administration. OBJECTIVES: The present study was conducted to investigate the efficacy of GW9508 administered peripherally on cognitive dysfunction in streptozotocin (STZ)-induced AD mice. METHODS: Seventy male ICR mice were randomly divided into seven groups: vehicle sham group, model, Donepezil, GW9508-L, GW9508-M, GW9508-H, and GW1100 + GW9508-H groups, and administered either vehicle (artificial cerebrospinal fluid [aCSF]) or STZ (3 mg/kg in the vehicle) once a day (9:00 a.m.) by intracerebroventricular injection bilaterally on day 1 and day 3, respectively. After 2 weeks of recovery, all mice were given drug treatment. Behavioral experiments were applied to test the recognition and spatial memory of mice, while molecular biology experiments such as Western blot, ELISA, and Nissl staining were used to detect the corresponding changes of signaling pathways. RESULTS: Intraperitoneal administration of GW9508 prevented STZ-induced cognitive impairment as well as decreased the level of p-tau and Aß1-42 in plasma and brain. GW9508 upregulated the expression of gut-brain peptides like PYY, CCK, IGF-1, and GLP-1 both in blood circulation and brain and downregulated the expression level of autophagy-related proteins through activating Akt/mTOR signaling pathway. Meanwhile, the treatment effect of GW9508 was reversed by GPR40 antagonist GW1100 significantly. CONCLUSION: Peripheral administration of GW9508 exhibits neuroprotective effects, and it could be a promising therapy for AD. The neuroprotective mechanism of GW9508 was based on promoting gut-brain peptide secretion, activating Akt/mTOR signal pathway, and regulating neuronal autophagy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...